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The application of conformal mapping methods to the solution of free-surface Row 
problems is considered. Methods of numerical conformal mapping based on Fourier series are 
extended to handle efftciently problems with time-dependent boundaries. They arc shown to be 
practicable only for moderately distorted geometries. Extensions of the Menikoff-Zemach 
method to “breaking” geometries are presented. These latter methods are robust at quite large 
distortions, but degrade prematurely in time-dependent problems at amplitudes smaller than 
achieved by our recent vortex methods. 

1. INTRODUCTION 

In this paper, we investigate the application of conformal mapping to the solution 
of time-dependent potential flow problems, such as Rayleigh-Taylor instability and 
water waves. We begin by formulating the water wave problem. For two-dimensionai, 
incompressible, irrotational, free-surface flow, the velocity is expressible as v = VQ, 
where the potential Q satisfies Laplace’s equation V*@ = 0 in the region y < n(x, t) 
beneath the free surface y = ~(x, t). Since the free surface moves with the fluid, 

Dx DY 
~=@“’ z=Oy9 (Y = tl(-G I)), (1.1) 

where D/Dt is a Lagrangian derivative. Bernoulli’s law is satisfied throughout the 
fluid so that 

g = -q(x, t) + $ u2 - Ps (iii!) 

at the free surface y = ~(x, t), where the gravitational acceleration is normalized to 
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unity and ps is the applied surface pressure. It is assumed below that the free surface 
is periodic in x with wavelength 271. 

In order to march forward in time, it is necessary to know V# at the free surface. If 
4 is known then its tangential derivative @/las is computable but its normal derivative 
a#/& must be found by solving Laplace’s equation. Green’s third formula expresses 
a#/&2 in terms of 4: 

Here p, q are vectors lying on the boundary 80 of the region D. Equation (1.3) is a 
linear integral equation of the first kind for the unknown function a$/&. Once +/an 
has been calculated, Eqs. (1.1) and (1.2) may be used to update the free surface and 
potential. 

Numerical solution of (1.3) for @/lan involves the approximation of its logarithmic 
kernel by a finite matrix. If the continuous boundary is approximated by N discrete 
points, the operation count for the solution of the resulting linear system is O(N3) 
since the matrix is full. In addition, storage of the matrix requires O(iV2) memory 
locations. For large N the computational costs are prohibitive. 

Our work is motivated by the desire to develop algorithms with decreased 
operation counts and storage requirements for solving free-surface potential flow 
problems. We have recently proposed a new vortex method [ 1,2] to solve these 
problems with O(N) memory and O(N2) operations per time step. In the present 
paper, two conformal mapping methods are studied. Both require only O(Qmemory. 
The methods discussed-in- Section 2 require only O(Ar logi N) operations-per time step 
but are effectively limited to modest surface deformations. In Section 3, modifications 
of the Menikoff-Zemach method [lo] that require O(iV2) operations per time step are 
introduced. Larger surface deformations can be handled accurately by these latter 
methods. 

2. CONFORMAL MAPPING USING FOURIER SERIES 

In this Section, numerical methods are developed to compute the conformal map 
z(c) of the unit disk ] [] < 1 onto a simply connected finite region D in the complex-z 
plane. A map of the unit disk onto a semi-infinite periodic region R: w  = x + iy, 
0 <x < 271, y < q(x), is given by 

w  = i In z(T), (2-l) 

where z(c) is a map of the unit disk onto the interior of the region with boundary 

z = exp[--ix + q(x)], 

This sequence of conformal maps is depicted in Fig. 1. 
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W-PLANE Z-PLANE <-PLANE 

w=ihz z(7) 

FIG. 1. A schematic plot indicating the sequence of conformal maps used to solve inviscid free- 
surface flow problems. Her;: the fluid lies below the interface y  = 7(x, I) as in the water wave problem, 

efore proceeding to the discussion of methods to compute the 
we note that knowledge of z(c) allows efficient solution of potential proble 

the region R. If $(w) is harmonic in R then $(i In z(c)) is harmonic in the unit 
Therefore, the Dirichlet problem can be solved by Poisson’s formula. Also, since 
conformal s are angle preserving, the normal derivative a$/& of 4 on the 
boundary 0 is related to the radial derivative a#/@ of # on / [I = p = k : 

(2.23 

The derivative dz/d< can not vanish for 151 < 1 if z(c) is single valued. 
Let us begin by characterizing the analytic character of z(C) in terms of Fourier 

series. The boundary values z(eia) of the conformal map z(c) are a periodic f~~~t~o~ 
of the angle M on the unit disk so 

(2.3) 

The condition that z(5) be analytic is 

A,=O, k < 0, (2.4) 

and, in this case, z(c) is given explicitly by 

z(t;> = f A,Ck. 
k=O 

(2.5) 

En other words, an analytic transformation of the unit disk onto a region 
equivalent to a parametrization of 30 in terms of a such that the Fourier represen- 
tation of t?D has only positive frequency components 

Now we consider a discrete approximation to the conformal map. Consider the 
equally spaced discrete points aj= uj (j= O,..., N- I), where cr = 27r/Ar, and the 
associated points zj on 80. Then zj can be represented as the fmite Fourier series 

-N/2<k<N/2 
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It may easily be shown that 

a/c =A, + c A,,,,. 
P#O 

(2.7) 

One way to determine an approximation to the conformal map z(C) is to require 
that ak = 0 for k < 0. Indeed, if N is large enough that A, is negligible for k > N, then 
ak is negigibly small for k < 0. This idea may be used to obtain iterative methods 
[4-81 based on the fast Fourier transform (FFT) to compute the approximate 
conformal map. These methods typically require O(N log, N) operations per iteration. 
We note that for any ak satisfying ak = 0 for k < 0, the resulting conformal map 

W = 2 akCk P-8) 
O<k<N/2 

satisfies z”(e’“j) = zj. Thus, the map z^ transforms the N equally spaced points eiuJ into 
points zj lying on aD. 

As an alternative to these iterative methods, we have obtained a differential 
equation which relates the time rate of change of the conformal map to the time rate 
of change of a moving boundary. This differential equation is well suited to the 
solution of free-surface flow problems where the solution of the potential problem 
determines the time rate of change of the free surface. 

Let the boundary be represented for all time t by the equation 

F(z(a, t), qa, t), t) = 0. 

Differentiation of (2.9) with respect to t yields 

(2.9) 

and differentiation with respect to the angle a (see Fig. 1) gives 

The relation 

Im 

az 

at 

i-i 

-z 
az 

aa 

z 

aF 

(2.10) 

(2.11) 

at 
aF az -- 
az aa 

(2.12) 

is obtained by substituting (2.11) into (2.10). This equation only provides the 
imaginary part of (az/at)/(az/aa). The real part of (&/at)/(az/aa) is determined by 
requiring that it be analytic in the domain described by (2.9). 
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The right-hand side of (2.12) is real and can be represented 
symmetric Fourier series: 

2F 
i at W-1)/2 

-Ii- 2F az 
=Re 2 b, exp(im a) 

m=o -- 
az f3a 

Therefore, analytic continuation of (2.12) gives 

az aZ W-l)/2 

at’ 
iaa C b, exp(im a), 

m==o 

where 

2Z (N-1)/2 

aa = kgo (ik)a, exp ika. 

349 

(2.93) 

(2,k4) 

The right-hand side of Eq. (2.12) is directly related to the normal velocity of the 
moving boundary. In Cartesian coordinates 

F(z, z; t> = Y - r&t 4 (2.?5) 

SO 

Also, 

Substitution of (2.16) and 

aF ar/ --5 at= at (2.16) 

(2. i7) 

(2.18) 

The free-surface condition (1.1) can be written as 

(2.19) 
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Using the decomposition of +/8x and a$/+~ into tangential and normal components 

(2.20) 

in (2.18) gives the final result in terms of the polar coordinates p and a: 

az 
at 

Im - 

i- 

az 
aa I 

a4 =-- 
ap p=l 

z 2 

-z-’ 

aa 

(2.21) 

An analogous result was obtained using perturbation methods by Kantorovich and 
Krylov [ 81. 

Eq. (2.21) describes the motion of points following the conformal map of the free 
surface rather than the Lagrangian or Eulerian paths. Bernoulli’s equation (1.2) must 
also be modified to take this fact into account: 

DQ DC=-lnJzl-+- 
[ (2)2+(i$2] 1% 

+te+!YDy--p 
ax Dt ay Dt S* 

I aa 

2 

(2.22) 

Once the conformal map (2.5) from the unit circle is known, the solution of the 
Dirichlet problem may be given in terms of a Fourier series 

(N- I)/2 
k,p n cos na + h,p” sin Ma]. (2.23) 

On the unit circle @ = 1) the tangential and normal derivatives are given by 

a4 (N-1)/2 
aa = z. [ -ngzg, sin no + nh, cos na 1, (2.24) 

ng, cos ba + nh, sin ~GL], (2.25) 

which are computable using FFTs in O(N log, IV) operations. 
Now let us summarize the steps involved in marching from time t to t t At by this 

method. At time t, the points {zj} and potentials {#j} are assumed known. First, the 
coefficients g, , h, in (2.23) are obtained from {#j} using an FFT. Next, V/ is 
computed on the boundary using (2.24) and (2.25). Then {#j} is updated by (2.22) 
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FIG. 2. A plot of the Stokes wave profile at t =O and at t= 2~. The amplittide is 83% of ihc 
max.imum Stokes wave amplitude. The FFT time-dependent mapping equation (2.21) is used with 
N= 64 points. The dots indicate the numerically computed position of the interface. The solid line IS 
obtained from Pad6 summation of the perturbation series for Stokes waves. 

and {z,~) is updated by (2.21). The total operation count is Q(~l~g~~). Note that the 
conformal map is uniquely defined by (2.21) and the supplementary conditions 
a0 = 0, Im(ar) = 0. The first condition ensures that the origin of the unit circle is 
mapped on to the origin of the z plane while the second fixes the overall phase of the 
map. 

As a test of this time dependent mapping method, we study the propagation of 
Stokes’ permanent water waves. In a frame of reference moving with the wave speed, 
the numerically calculated profiles should be steady. The initial conditions for the 
calculation are obtained using Pad& approximants of p~rturba~io~ expansions of the 
Stokes waves [ll]. The time-dependent equations (2.21), (2.22) are solved by a 
fourth-order Adams-Moulton predictor-corrector scheme. 

As with other simulations of propagating nonlinear water waves !2,9 ]. an 
instability of the free surface quickly develops causing the interface to take on a 
jagged appearance. The instability is not due to roundoff or time stepping errors and 
may be physical in origin [9]. To remove the instability the five point smoothing 
operator used by Longuet-Higgins and Cokelet was employed periodically in our 
numerical simulation. 

For a Stokes wave with peak-to-trough amplitude 80% of the maximum allowed by 
theory, we choose the time step to be 2n/400 with wavelength 271 and apply 
smoothing every tenth step. The resulting wave profile is plotted in Fig. 2. The dots 
indicate the position of the points zj used to calculate the conformal map of the wave. 
The solid line is the wave profile computed by Padb approximants [l 1 1, transiated by 
an amount to the nonlinear phase speed multiplied by the time, The computation time 
for one evaluation of the time derivatives of the map and potential is 3 msec on the 
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CRAY-1 computer using N= 64 points. The total computation time for the motion 
of the wave through one period is about 1 sec. We observe no degradation in the 
conformal map if the simulation of the Stokes wave is carried out for times longer 
than one period. However, time stepping errors can cause modulation of the steady 
wave for times longer than t = 4n. 

The conformal mapping method described here works well provided the region is 
not highly distorted. As the region of interest becomes more distorted the points 
corresponding to the conformal map tend to crowd [3, lo]. For example, consider the 
conformal mapping from the unit disk to the region lying below y =A cos kx. The 
number of terms N that must be retained in the Fourier expansion (2.4) to obtain a 
good representation of this map satisfies In N - ykA as kA -+ co [3], where y = 
(7c/2) st ((sin x)/x) dx 1: 2.909, showing the difficulty of mapping from the unit disk 
to a deformed region. 

When N is large, almost all of the equally spaced points e”‘j on the unit circle are 
mapped into points zj that are crowed into small intervals on the boundary of the 
domain D. Dubiner [3] has recently made a detailed analysis of this problem and 
has shown that the crowding occurs whenever the region being mapped has a 
“narrow” section. This effect occurs in high amplitude Rayleigh-Taylor instability 
and in breaking waves. The FFT method is not effective in dealing with these highly 
distorted geometries. 

When the domain D is highly deformed, the iterative methods [4-81 and our 
differential equation method do give a conformal map of the unit disk onto a domain 
that passes through the desired points zj of ~30, However, unless N is unreasonably 
large, the conformal map so obtained will have large deviations from 80 between the 
points zj. Indeed, (2.8) gives an accurate conformal map of 80 only if ak decreases 
rapidly as k increases to {iv. 

One possible approach to the crowding problem is to use a sequence of mappings 
of the disk onto successively more highly deformed regions. Such iterated mappings 
are still under study. For such methods, one result seems assured, namely that the 
operation counts must degrade from O(N log, N) to O(N*) or worse. In this case, 
these Fourier series methods are probably inferior to the methods to be described in 
Section 3. 

3. APPLICATION OF THE MENIKOFF-ZEMACH METHOD 

The Fourier series methods for mapping the unit disk onto D can not accurately 
handle highly distored domains as the crowding phenomenon causes a severe loss of 
resolution in some part of the physical boundary. This difficulty may be overcome by 
mapping D onto the unit disk with a regular distribution of points on 80. The 
crowding then occurs on the boundary of the unit disk. Even with a highly 
nonuniform distribution of points on the unit circle, the potential problem in the unit 
disk is still readily solved by Poisson’s formula. 
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ecently, Menikoff and Zemach [lo] have developed a new no~iinear interval 
equation for conformal mapping of the region R above y = V(X) onto the periodic 
semi-infinite strip S: 0 < u < 277, 0 < ZJ ( co. Their method requires relatively few 
points to achieve accurate results for distorted domains. 

A simple extension of Menikoff and Zemach’s equation whieh is valid for general 
periodic interfaces is derived here and is used to investigate the ~row~i~~ 
phenomenon for multivalued (or “breaking wave’? interfaces. A time dependent 
version of the equation is also developed. This approach reduces to the i~te~rat~o~ of 
N nonlinear differential equations. 

The ~e~ikoff-Zemach equations, generalized to handle co~formal maps of a 
domain with boundary curve parametrized as x =x(e), y = y(e), are 

y(e) = Y, -t 2 j2n In 1 
sin 4(24(e) - u(e’)) dx 

+ {In co: (9) 

sin +(e - e’) ~!e’)-$$ 

[(x(e’) - e’) - (x(e) - e)] +$, 

u(e) =x(e) -x, + 2 J i 
2~ ln sin+(u(e) - u(e’)) dy de’ I___ 

sin +(e - e’) 

+j:Xcot (41 [y(e’)-y(e)]%. 

de’ 2n 

(3.lb) 

Here e is chosen so that x(0) = 0, ~(27~) = 2a, u(e) is defined so (.x(e), y(e)) is 
mapped into (u(e), 0), and ym, x, are determined by the condition that u(0) = 
Note that (3.la) and (3.lb) are equivalent; either one can be used to determine u(e). 
Once u(e) is found by solution of (3.1), the conformal map is determined. 

Equations (3.1) are derived from the pair of Hilbert transforms: 

Re[G(u, O)] = Re(G,) - P(2n cot (91 Im[G(ul, 0] gY 
0 

Im[G(u, 0)] = Im(G,) + Pfz cot (?I (32b) 
0 

where G(W) is analytic in the upper-half W-plane and G(W) = G, + S(l/\ 
/W]-+co.Equation(3.1)followsifG=x+iy-W,where W=u+iu. 

The Hilbert transforms (3.2) are also useful for solving potential problems in the 
region R. If the map function u(e) is known, boundary values of a potential 4 on a 
may be related to corresponding boundary values of a potential Q, defined in the strip 
S in the W-plane: 
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where s and IZ are the tangential and normal directions to 8R. The tangential and 
normal derivatives of CD are the real and imaginary parts of an analytic functions in S 
so they are related by the Hilbert transform: 

aqd ds --= - 
&z de J 

2z 
0 

cot + (u(e) - u(d)) 

X [ 2 (er) -$- (e) - 2 (e) $ (e’)] -$. (3.4) 

Note that in the application of (3.4) it is necessary to compute du/de with some care. 
We have found it best to find du/de by using the Hilbert transform of In dz/dw to 
obtain an equation for In du/de. 

FIG. 3. A plot of y  vs x for the “breaking” curves (3.5), x = e + b sin e, y  = 0.4 sin e, for b = 1.0, 
1.5, 2.0. 
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In order to examine the crowding properties of domains bounded by bre~k~~~ 
waves, we use (3.1) to compute the function u(e) for the periodic curve 

x(e) = e + b sin e, 

y(e) = 0.4 sin e. 

For b ( 1, the curve is a single valued function of x. For b = 1, the curve has a 
vertical slope at e = TC, and for b > 1, the function is m~ltivalu~d. In Fig. 3, the nerves 
(3.5) are plotted for b = 1, 1.5, and 2.0. The map function u(e) must be a 
monotonically increasing function of e. Therefore du/de > 0 ~ith~~g~ it can 
exponentially small due to crowding. The functions u(e) and dq’de are tabulated 
the curves (3.5) in Table I. Another measure of the crowding is given by ln~d~/d~~. 
Fig. 4, ln(du/de) is plotted for various values of b to reveal the exponential nature of 
the crowding phenomenon. As b increases, the crowding rapidly becomes severe Eden 
though the amplitude of the wave (3.5) is quite modest. Similar crowding should be 
expected in any dynamic simulation of a breaking wave. 

It is also possible to formulate a set of differential equations based on the 
Menikoff-Zemach approach to map a time-dependent boundary. For ~ararnet~i~~~ 
boundaries of the form (x(e, t), y(e, t)), the mapping function u(e, t) is deter 

ax ax 
at ae + 

aY a~ -- -- 
au du, at ae au -z----+ 
at dt ae 

2n 
+ i ( cot 

u(e) - u(e’) 

0 2 1 

$ (4 $ (4 - 2 @ 

- 
( $9 1 2 

(34 

where (ds/de)’ = (&/8e)’ + (&/ae)’ and u,(t) is chosen so that U(O) = 0. 
Given the values of U, 4, x, and y at some time t the time stepping algorithm 

proceeds as follows: First, the values of u(e), x(e) and y(e) are used to det~mi~e the 
map derivative du/de. Next, the normal velocities +$/an can be computed from (3.4). 
One a#/& and +/a n are known, the boundary curve (x(e, t), u(e, t)) can be marched 
to the next time step. Then, Bernoulli’s equation (1.2) gives the boundary values d 4 
al the next step. Finally, Eq. (3.6) is used to march u forward in time. 
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TABLE I 

Mapping Functions for the “Breaking” Curves (3.5) 

e 

b = 1.0 b= 1.5 b = 2.0 

de) du/de 44 du/de 44 dulde 

0 0.0 1.9239 0.0 2.3515 0.0 2.1610 
71/d 1.5706 1.9648 1.8956 2.3030 2.2126 2.6351 
42 2.933 1 1.4326 3.4076 1.4615 3.8677 1.4772 
3?r/4 3.7681 7.0083 x 10-l 4.1579 4.9413 x 10-l 4.5352 3.0688 x 10-l 
x 4.0981 2.0146 x 10-r 4.3291 4.7511 x 10-Z 4.6125 4.5852 x 1O-3 
57i/4 4.1841 7.7401 x lo-* 4.3387 6.4110 x 1O-4 4.6131 9.8707 x lo-’ 
37112 4.4406 4.2459 x 10-l 4.3440 4.0460 x lo-* 4.6131 3.2512 x IO-’ 
7?r/4 5.2656 1.2741 4.7624 1.3178 4.6920 7.0508 x 10-l 

’ The results were checked for 32 and 64 points and agreed to the five significant digits given here. 

We have tested the time dependent mapping equation (3.6) on the mapping of the 
region bounded by a cosine curve of increasing amplitude, 

x(e, t) = e, 

y(e, t) = t cos(e), 
(3.7) 

and on the regions bounded by a time dependent version of the breaking curves (3.5), 

x(e, t) = e + t sin e, 

y(e, t) = 0.4 sin e. 
(3.8) 

-18 

e 

FIG. 4. A plot of In du/de for the breaking curves plotted in Fig. 3. (a) b = 1.0, (b) b = 1.5, (c) 
b = 2.0. Here the Menikoff-Zemach equation (3.1) is solved for the conformal mapping function u(e). 
Observe the exponentially strong crowding for b > 1. 
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TABLE II 

Error in the Conformal Mapping of the Time-Dependent Cosine Curves (3.7) 

t Min(du/de) Maximum error (percentage) 

N= 32 N=64 N= 128 
- 

1.0 2.23 x 10-l 1.8 x 10-5 3.0 x 1o-‘o 6.9 x 1o-‘C 
2.0 2.54 x 1O-2 9.1 x 10-z 2.8 x 10-5 1.2 x 1om8 
3.0 2.19 x lo-’ 6.9 3.1 x 1om2 1.4 x lo-’ 
4.0 1.66 x 1o-4 - 1.3 3.5 x 1o-4 
5.0 1.20 x 10-5 9.9 2.1 x IO-* 

iI The time step is At = 0.001. 

A fourth-order Adams-Moulton predictor-corrector scheme was used to march the 
map function u(e, t) forward in time. At the times tabulated in Tables II and % 
mapping function was corrected by solving (3.1). The time integration wa 
restarted with the corrected values of u(e). The maximum error for a given 
given in Tables 2 and 3 for 32, 64, and 128 points. The minimum of the fun&m 
&/de for each time is also listed to give an indication of the crowding. The error for 
moderate distortions was fairly insensitive to reductions in the time step dt but was 
reduced markedly when the number of points was increased. In regions of severe 
crowding the time step must be very small in order to ensure accuracy for an explicit 
integration scheme. Too large a time step can destroy the monoto~i~ity of u(e). 

We have also applied the integral equation (3.1) and time-dependent ev~l~~~~~ 
equation (3.6) to the numerical simulation of Rayleigh-Taylor instability. The initial 
conditions for a single frequency Rayleigh-Taylor problem are as foHows. Fluid. of 
density 1 lies above the periodic interface 

y(e, t = 0) = 0.5 cos(e), 

x(e, t = 0) = e, 

TABLE III 

Error in the Conformal Mapping of the Time-Dependent “Breaking” Curves (3.8) 

r Min(du/de) Maximum error (percentage) 

N=32 N=64 N= 128 

0.8 1.85 x llr’ 4.5 x 10-s 3.2 x lo-‘0 1.6 x lo-‘” 
1.0 1.48 x 10-2 2.0 x 10-3 3.1 x 10-7 3.8 x IO-‘@ 
1.2 1.63 x 1O-2 3.9 x 10-2 9.0 x 1om5 6.4 x lo-” 
1.4 1.99 x 10-3 - 4.9 x 10-3 8.5 x IQ-’ 
1.6 1.02 x 1om4 - - 9.5 x IQ-* 

0 The time step is dt = 0.001 and 48.bit mantissa arithmetic is used. 

581/40/2-7 
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and is initially at rest. Below the interface, there is a vacuum. The resulting flow is 
unstable under gravitational acceleration. The results plotted in Fig. 5 are obtained 
using the integral equation (3.1). With 60 points per wavelength, we were unable to 
continue the calculation past a time of t N 3.5 at which the amplitude to wavelength 
ratio of the spike (at x = M) is about 5.4/2~ N 0.86. The degree to which the total 
energy and the rate of mass flux are conserved gives a good indication of the 
reliability of the simulation. After a time of 3.0, there is a progressive degradation of 
conservation of these quantities. This deterioration is also reflected in the spike 
acceleration. For large t, the spike should be nearly in free fall with an acceleration of 
-1.0 in our units [ 11, In contrast, the present simulation shows a spike acceleration 
which decreases (in absolute value) below 1.0 after t = 3.0. Hence we conclude that 
the results are not reliable beyond t = 3.0. Similarly, the time-dependent evolution 
equation (3.6) gives results for this problem that are reliable only until t N 3.0. 

The initial conditions for a multiple frequency Rayleigh-Taylor instability are as 
follows. Fluid of density 1 lies above the interface with an initial surface deformation 
of the form 

y(e, t) = 0) = 0.1 cos e + 0.01 cos 5e, 

x(e, t = 0) = e, 

and is again at rest initially. This problem has been previously studied using other 
methods by White [ 121 and Baker et al. [2]. We obtain the results plotted in Fig. 6 
using 60 points. Here, the growth of the short wave spike on the long wave bubble is 

FIG. 5. A plot of the interface y(x, t) for the Rayleigh-Taylor instability with initial conditions 
y(x, t = 0) = 0.5 cos x, Q(x, t) = 0 for t = 0.5 to t = 3.5 in steps of 0.5. Here 60 points per wavelength are 
used. Both the integral equation (3.1) and time-dependent equation (3.6) degrade significantly in 
accuracy for t 2 3 at this spatial resolution. 
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FIG. 6. A plot of the interface y(x, t) for the multifrequency Rayleigh-Taylor instability with initial 
conditions J(X, t = 0) = 2n(O.l cos x + 0.01 cos 5x), (b(x, t) = 0 for t = 0.5 to 1.2. Here 60 points per 
wavelength are used. Note that the interface has become multivalued at t zz 1.2. 
equations (3.1) and time-dependent equation (3.6) degrade significantly in accuracy for f > 1.3 at ::his 

spatial resolution. 

enhanced reiative to the growth of the short wave spike on the long wave spike. This 
follows from the higher effective gravity in the bubble region. Fsr 
condition our extension of the Menikoff-Zemach equation must be empl 
interface becomes multivalued after a time of 1.2. The c~l~~~atio~ 
significantly beyond a time of 1.3. 

The present conformal mapping methods give results for Rayleigb-T~y~Q~ 
instability that are quite good. The amplitude/wavelength ratio has increased by 
about a factor 10 for the single frequency run in Fig. 5 before the 6 
calculations degrade. Menikoff and Zemach (private communication) obtain 
ampli~~ations before their calculations break down. I-Iowever, the reasons for 
degradation of the calculations at large time remain unclear. On the one hand, * 
conformal mapping methods described in this Section are capable of resolving m 
more highly deformed interface than achieved at breakdown, even with 60 ~oi~ts~ 
the other hand, new vortex methods [ 1,2] have been used to calculate the si~~~~ 
frequency. Rayleigh-Tayior instability with similar spatial resolution to at least twice 
the amplifications achieved here. For this reason no smoothing was applied after a 
time of 3.0 in the Rayleigh-Taylor simulation. It seems that our method of cou 
free-surface dynamics and conformal mapping introduces numerical inac~u~~~~e$ 
(observed as rapid oscillations of 4 and y for t 2 3.0). It is possible that this 
deficiency may be corrected by more sophisticated conformal mapping te~h~iq~e~ 

i31. 



360 MEIRON, ORSZAG, AND ISRAELI 

REFERENCES 

1. G. R. BAKER, D. I. MEIRON, AND S. A. ORSZAG, Phys. Fluids 23 (1980), 1485. 
2. 0. R. BAKER, D. I. MEIRON, AND S. A. ORSZAG, to be published. 
3. M. DUBINER, Ph. D. thesis, Department of Mathematics, MIT, Cambridge, Mass., 1981. 
4. B. FORNBERG, SIAM J. Sci. Stat. Comp., in press. 
5. D. GAIER, “Konstruktive Methoden der Korformen Abbildung,” Springer, Berlin, 1964. 
6. C. GRAM, “Selected Numerical Methods for Linear Equations, Polynomial Equations, Partial Dif- 

ferential Equations, Couformal Mapping,” Regnecentralen, Copenhagen, 1962. 
7. D. IVES, AIAA J. 14 (1976), 1006. 
8. L. V. KANTOROVICH AND V. I. KRYLOV, “Approximate Methods of Higher Analysis,” Interscience, 

New York, 1958. 
9. M. S. LONGUET-HIGGINS AND E. D. COKELET, Proc. Roy. Sot. London Ser. A 350 (1976), 1. 

10. R. MENIKOFF AND C. ZEMACH, J. Comput. Phys. 36 (1980), 366. 
11. L. W. SCHWARTZ, J. Fluid Mech. 62 (1974), 553. 
12. G. N. WHITE, Los Alamos Scientific Laboratory Report LA-5575-MS, 1974. 


